Woman eating pizza (Shutterstock)
Happy Pi Day, where we celebrate the world’s most famous number. The exact value of π=3.14159… has fascinated people since ancient times, and mathematicians have computed trillions of digits. But why do we care? Would it actually matter if somebody got the 11,137,423,895,285th digit wrong?
Probably not. The world would keep on turning (with a circumference of 2πr). What matters about π isn’t so much the actual value as the idea, and the fact that π seems to crop up in lots of unexpected places.
Let’s start with the expected places. If a circle has radius r, then the circumference is 2πr. So if a circle has radius of one foot, and you walk around the circle in one-foot steps, then it will take you 2π = 6.28319… steps to go all the way around. Six steps isn’t nearly enough, and after seven you will have overshot. And since the value of π is irrational, no multiple of the circumference will be an even number of steps. No matter how many times you take a one-foot step, you’ll never come back exactly to your starting point.

Jim.belk
Pi in other places
You don’t just get π in circular motion. You get π in any oscillation. When a mass bobs on a spring, or a pendulum swings back and forth, the position behaves just like one coordinate of a particle going around a circle.
Autopilot, CC BY-SA
f(x)=e-x², where e=2.71828… is Euler’s number, describes the most common probability distribution seen in the real world, governing everything from SAT scores to locations of darts thrown at a target.
The area under this curve is exactly the square root of π.
How did π get into it?! The two-dimensional function f(x)f(y) stays the same if you rotate the coordinate axes. Round things relate to circles, and circles involve π.
Another place we see π is in the calendar. A normal 365-day year is just over 10,000,000π seconds. Does that have something to do with the Earth going around the sun in a nearly circular orbit?
Actually, no. It’s just coincidence, thanks to our arbitrarily dividing each day into 24 hours, each hour into 60 minutes, and each minute into 60 seconds.
What’s not coincidence is how the length of the day varies with the seasons. If you plot the hours of daylight as a function of the date, starting at next week’s equinox, you get the same sine curve that describes the position of a pendulum or one coordinate of circular motion.
Advanced appearances of π
More examples of π come up in calculus, especially ininfinite series like
1 – (1⁄3) + (1⁄5) – (1⁄7) + (1⁄9) + ⋯ = π/4
and
12 + (1⁄2)2 + (1⁄3)2 + (1⁄4)2 + (1⁄5)2 + ⋯ = π2/6
(The first comes from the Taylor series of the arctangent of 1, and the second from the Fourier series of a sawtooth function.)
Also from calculus comes Euler’s mysterious equation
eiπ + 1 = 0
relating the five most important numbers in mathematics: 0, 1, i, π, and e, where i is the (imaginary!) square root of -1.

Peter John Acklam, CC BY-SA

345Kai, CC BY-SA
Finally, some people prefer to work with τ=2π=6.28… instead of π. Since going a distance 2π takes you all the way around the circle, they would write that eiτ = +1. If you find that confusing, take a few months to think about it. Then you can celebrate June 28 by baking two pies.

Lorenzo Sadun, Professor of Mathematics, University of Texas at Austin
This article was originally published on The Conversation. Read the original article.
No comments:
Post a Comment
Spammers, stay out. Only political and video game discussion here.